您当前的位置:首页 > 联考资料 > MBA联考数学

MBA数学:从数列递推到N球配对问题

时间:2015-09-23 09:16:55  来源:MBA培训网  点击:



 本篇给出求简单递推数列通项公式的通用解法,并由此思路解一个老题 
以下记A(N)为数列第N项

  1、已知A1=1,A(N)=2A(N-1)+1,求数列通项公式

  解:由题意,A(N)+1=2[A(N-1)+1]

  即 A(N)+1是以2为首项,2为公比的等比数列

  因此 A(N)+1=2^N

  数列通项公式为 A(N)=2^N-1

  2、通用算法

  已知A1=M,A(N)=P*A(N-1)+Q,P《》1,求数列通项公式

  解:设 A(N)+X=P*[A(N-1)+X]

  解得 X=Q/(P-1)

  因此 A(N)+Q/(P-1)是以A1+Q/(P-1)为首项,P为公比的等比数列

  由此可算出A(N)通项公式

  3、已知A1和A2, A(N)=P*A(N-1)+Q*A(N-2),求数列通项公式

  解题思路:设 A(N)+X*A(N-1)=Y*[A(N-1)+X*A(N-2)]

  代入原式可得出两组解,对两组X,Y分别求出

  A(N)+X*A(N-1)的通项公式

  再解二元一次方程得出A(N)

  注:可能只有一组解,但另有解决办法。

  4、现在用上面的思路来解决一个著名的问题:

  N个球和N个盒子分别编号从1到N,N个球各放入一个盒子,求没有球与盒子编号相同的放法总数。

  解:设A(N)为球数为N时满足条件的放法(以下称无配对放法)总数,

  易知A1=0,A2=1

  当N》2时,一号球共有N-1种放法,假设1号球放入X号盒子

  在剩下的N-1个球和N-1个盒子中,如X号球正好放入1号盒子,

  问题等价于有N-2个球的无配对放法,放法总数为:A(N-2)

  在剩下的N-1个球和N-1个盒子中,如X号球没有放入1号盒子,

  则可以把X号球看作1号球,问题等价于有N-1个球的无配对放法,

  放法总数为:A(N-1)

  因此有 A(N)=(N-1)*[A(N-1)+A(N-2)]

  上式可变换为: A(N)-NA(N-1)

  =-[A(N-1)-(N-1)*A(N-2)]

  按等比数列得出: A(N)-NA(N-1)=(-1)^N

  上式除以N!得出:

  A(N) A(N-1) (-1)^N

  ------- = ---------------- + -----------------

  N! (N-1)! N!

  把 A(N)/N!当作新的数列, 把(-1)^N/N!也作为一个数列

  则 A(N)等于数列 (-1)^N/N!从第二项到第N项的和再乘以N

  另外可得出:

  N球恰有K球与盒子配对的放法总数为: C(N,K)*A(N-K)


无相关信息

郑州华章MBA培训中心
咨询电话:0371-66961135 66963688
报名时间:8:00-18:00,周末不休
校址:郑州二七区大学路金源大厦(郑州大学南校区东门对面)11楼>
公交路线:乘4、63、66、82、111、201、217、256、317、903、904、906、Y806、Y815路公交车到大学路桃源路站下车
华章MBA简介 华章学员感言 华章命中的历年MBA联考真题 华章的每一个成长与你有关

下一篇: 数学试题二
上一篇:mba数学知识点概述(整式、分式)

华章简介公司简介 - 旗下项目 - 联系我们 - – 感谢关注
版权所有  郑州九鼎管理咨询有限公司(华章MBA 培训中心); Tel:0371-66961135 66963688
郑州大学路18号(老郑大东门对面)金源大厦11楼
Copyright(c) 2001-2012 ICP备案号: 豫ICP备05014872号-2 http://www.mbawang.com