1、设10件产品中有4件不合格品,从中任取两件,已知取出的两件中有一件不合格品,求另一件也是不合格品的概率。(0.2)
【思路】在”已知取出的两件中有一件不合格品”的情况下,另一件有两种情况(1)是不合格品,即一件为合格品,一件为不合格品(2)为合格品,即两件都是合格品.对于(1),C(1,4)*(1,6)/C(2,10)=8/15;对于(2),C(2,4)/C(2,10)=2/15.提问实际上是求在这两种情况下,(1)的概率,则(2/15)/(8/152/15)=1/5
2、设A是3阶矩阵,b1,b2,b3是线性无关的3维向量组,已知Ab1=b1b2,Ab2=-b12b2-b3,Ab3=b2-3b3,求|A|(答案:|A|=-8)
【思路】A=(等式两边求行列式的值,因为b1,b2,b3线性无关,所以其行列式的值不为零,等式两边正好约去,得-8)
3、某人自称能预见未来,作为对他的考验,将1枚硬币抛10次,每一次让他事先
预言结果,10次中他说对7次,如果实际上他并不能预见未来,只是随便猜测,则他作出这样好的答案的概率是多少?答案为11/64。
【思路】原题说他是好的答案,即包括了7次,8次,9次,10次的概率.即C(710)0.5^7x0.5^3......C(1010)0.5^10,即为11/64.
4、成等比数列三个数的和为正常数K,求这三个数乘积的最小值
【思路】a/qaa*q=k(k为正整数)
由此求得a=k/(1/q1q)
所求式=a^3,求最小值可见简化为求a的最小值.
对a求导,的驻点为q=1,q=-1.
其中q=-1时a取极小值-k,从而有所求最小值为a=-k^3.(mba不要求证明最值)
5、掷五枚硬币,已知至少出现两个正面,则正面恰好出现三个的概率。
【思路】可以有两种方法:
无相关信息 |
郑州华章MBA培训中心 |
下一篇: MBA全国联考数学重点习题三 |