您当前的位置:首页 > 联考资料 > MBA联考数学

MBA数学基础练习题附答案(一)

时间:2014-06-11 15:45:08  来源:MBA培训网  点击:



1、设10件产品中有4件不合格品,从中任取两件,已知取出的两件中有一件不合格品,求另一件也是不合格品的概率。(0.2) 
  【思路】在"已知取出的两件中有一件不合格品"的情况下,另一件有两种情况(1)是不合格品,即一件为合格品,一件为不合格品(2)为合格品,即两件都是合格品.对于(1),C(1,4)*(1,6)/C(2,10)=8/15;对于(2),C(2,4)/C(2,10)=2/15.提问实际上是求在这两种情况下,(1)的概率,则(2/15)/(8/15 2/15)=1/5。 
  2、设A是3阶矩阵,b1,b2,b3是线性无关的3维向量组,已知Ab1=b1 b2, Ab2=-b1 2b2-b3, Ab3=b2-3b3, 求 |A| (答案:|A|=-8) 
  【思路】A=(等式两边求行列式的值,因为b1,b2,b3线性无关,所以其行列式的值不为零,等式两边正好约去,得-8) 
  3、某人自称能预见未来,作为对他的考验,将1枚硬币抛10次,每一次让他事先预言结果,10次中他说对7次 ,如果实际上他并不能预见未来,只是随便猜测,则他作出这样好的答案的概率是多少?答案为11/64。 
  【思路】原题说他是好的答案,即包括了7次,8次,9次,10次的概率. 即 C(7 10)0.5^7x0.5^3 ......C(10 10)0.5^10, 即为11/64. 
  4、成等比数列三个数的和为正常数K,求这三个数乘积的最小值 
  【思路】a/q a a*q=k(k为正整数) 
  由此求得a=k/(1/q 1 q) 
  所求式=a^3,求最小值可见简化为求a的最小值. 
  对a求导,的驻点为q= 1,q=-1. 
  其中q=-1时a取极小值-k,从而有所求最小值为a=-k^3.(mba不要求证明最值)。 
  5、掷五枚硬币,已知至少出现两个正面,则正面恰好出现三个的概率。 
  【思路】可以有两种方法: 
  1.用古典概型 样本点数为C(3,5),样本总数为C(2,5)C(3,5)C(4,5)C(5,5)(也就是说正面朝上为2,3,4,5个),相除就可以了; 
  2.用条件概率 在至少出现2个正面的前提下,正好三个的概率。至少2个正面向上的概率为13/16,P(AB)的概率为5/16,得5/13 
  假设事件A:至少出现两个正面;B:恰好出现三个正面。 
  A和B满足贝努力独立试验概型,出现正面的概率p=1/2 
  P(A)=1-(1/2)^5-(C5|1)*(1/2)*(1/2)^4=13/16 
  A包含B,P(AB)=P(B)=(C5|3)*(1/2)^3*(1/2)^2=5/16 
  所以:P(B|A)=P(AB)/P(A)=5/13

 

 

      郑州华章培训学校MBA

     联系电话:66961135        66963688

     网址:www.mbawang.com

     E—mail:mbawang2007@163.com

 

无相关信息

郑州华章MBA培训中心
咨询电话:0371-66961135
报名时间:8:00-18:00,周末不休
校址:郑州二七区大学路金源大厦(郑州大学南校区东门对面)11楼>
公交路线:乘4、63、66、82、111、201、217、256、317、903、904、906、Y806、Y815路公交车到大学路桃源路站下车
华章MBA简介 华章学员感言 华章命中的历年MBA联考真题 华章的每一个第一都与你有关

下一篇: MBA联考数学基础知识重点内容辅导
上一篇:MBA全国联考数学的学习方法

华章简介公司简介 - 旗下项目 - 联系我们 - – 诚邀加盟
版权所有  郑州九鼎管理咨询有限公司(华章MBA 培训中心); Tel:0371-66961135
郑州大学路18号(老郑大东门对面)金源大厦11楼
Copyright(c) 2001-2012 ICP备案号: 豫ICP备05014872号-2 http://www.mbawang.com