1、设10件产品中有4件不合格品,从中任取两件,已知取出的两件中有一件不合格品,求另一件也是不合格品的概率。(0.2)
【思路】在“已知取出的两件中有一件不合格品”的情况下,另一件有两种情况(1)是不合格品,即一件为合格品,一件为不合格品(2)为合格品,即两件都是合格品.对于(1),C(1,4)*(1,6)/C(2,10)=8/15;对于(2),C(2,4)/C(2,10)=2/15.提问实际上是求在这两种情况下,(1)的概率,则(2/15)/(8/15 2/15)=1/5
2、设A是3阶矩阵,b1,b2,b3是线性无关的3维向量组,已知Ab1=b1 b2, Ab2=-b1 2b2-b3, Ab3=b2-3b3, 求 |A| (答案:|A|=-8)
【思路】A= (等式两边求行列式的值,因为b1,b2,b3线性无关,所以其行列式的值不为零,等式两边正好约去,得-8)
3、某人自称能预见未来,作为对他的考验,将1枚硬币抛10次,每一次让他事先
预言结果,10次中他说对7次 ,如果实际上他并不能预见未来,只是随便猜测, 则他作出这样好的答案的概率是多少?答案为11/64。
【思路】原题说他是好的答案,即包括了7次,8次,9次,10次的概率. 即 C(7 10)0.5^7x0.5^3 ......C(10 10)0.5^10, 即为11/64.
4、成等比数列三个数的和为正常数K,求这三个数乘积的最小值
【思路】a/q a a*q=k(k为正整数)
由此求得a=k/(1/q 1 q)
所求式=a^3,求最小值可见简化为求a的最小值.
对a求导,的驻点为q= 1,q=-1.
其中q=-1时a取极小值-k,从而有所求最小值为a=-k^3.(mba不要求证明最值)
5、已知f(xy)=f(x) f(y)且f’(1)=a,x≠0,求f’(x)=? (答案为a/x)
【思路1】原方程两边对Y进行求偏导
xf’(xy)=f’(y) 其中f’(xy)与f’(y)都是对y偏导数
xf’(x*1)=f’(1)=a 得 f’(x)=a/x
【思路2】当⊿x→0时,令x ⊿x=xz则z=(1 ⊿x/x)
由f’(x)=[f(x ⊿x )-f(x)]/ ⊿x
={f[x(1 ⊿x/x)]-f(x)}/⊿x
=[f(x) f(1 ⊿x/x)-f(x)]/⊿x
=f(1 ⊿x/x)/⊿x =f’(1)/x=a/x
6、已知函数f(x y,x-y)=x2-y2, 则f对x的偏导数加f对y的偏导数等于? (a)2x-2y (b)x y
【思路1】设U=x y,v=x-y
f(u,v)=uv
f’x=f’u*u’x f’v*v’x=v*1 u*1=u v
f’y=f’u*u’y f’v*v’y=v-u
f’x f’y=u v v-u=2v=2(x-y)=2x-2y 选A
【思路2】由已知f(x y,x-y)=(x y)(x-y),
令u=x y, v=x-y, 则f(u,v)=uv,于是f(x,y)=xy,故答案为(b).
结论:b应该是对的,复合函数是相对与自变量而言的,自变量与字母形式无关,参见陈文灯的考研书。
7、已知方程7x2-(k 13)x k2-k-2=0的两个实根分别在区间(0,1)和(1,2)内,则k的取值范围是什么?答案为(-2,-1)U(3,4)
【思路】画图可得f(0)>0,f(1)<0,f(2)>0代入计算即可
4、A,B是一次随机实验的两个事件,则————
A. A-(B-A)=A-B B. A-(B-A)=A
【思路】b,利用定义可得
8、已知随机变量X的密度的函数是:f(x)=
其中m>0,A为常数,则概率P{m0)的值一定是:____
A、与a无关,随着m的增大而增大
B、与m无关,随着a的增大而增大
C、与a无关,随着m的增大而减少
D、与m无关,随着a的增大而减少
【思路】P{m0)= dx=Ae-m=1 A=em ,P{m= =Ae-m [1-e-a]= 1-e-a a>0 答案为B1、已知f(xy)=f(x) f(y)且f’(1)=a,x≠0,求f’(x)=? (答案为a/x)
MBA数学试题一 2012年MBA英语考试阅读理解技巧总结 交大安泰2013年入学MBA提前批面试政策(金鹰计划) MBA面试经验之辩论技巧 MBA面试简历填写 东南大学2013年工商管理硕士(MBA)招生简章 MBA培训:中小型企业的软文营销 |
郑州华章MBA培训中心 |
下一篇: 2012年mba数学复习--概况论 |